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Abstract 

This paper is concerned with minimax estimation of a bounded mean Poisson 
given the prior information that the mean lies in a bounded domain, and using the 
information normalized squared error loss. It would only be necessary to find the 
correct corresponding Bayes estimator, and we present the algorithm of      
reduced gradient via stochastic perturbation for solving this statistical problem. 

1. Introduction 

Two important problems in statistical inferences are estimation and 
tests of hypotheses. One type of estimation, namely, point estimation, is 
to be the subject of this work. 

Point estimation admits two problems: the first, to devise some means 
of obtaining a statistic to use as an estimator; the second, to select criteria 
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and techniques to define and find a “best” estimator among many possible 
estimators several method. There are several methods of obtaining point 
estimators of parameters, among of these are (i) the Bayes method,            
(ii) maximum likelihood method (see, for instance, [4]). A Bayes estimator 
is given as the mean of the posterior or from the decision theoretical 
viewpoint as an estimator having smallest average risk (see, for instance, 
[7], [10], and [11]). 

Usually, for all these criteria, the estimators are characterized as the 
global minima of non-convex functionals and the usual difficulties of non-
convex optimization have been observed, when numerical procedures are 
introduced. In this framework, recent works have shown that suitable 
stochastic perturbations of usual reduced gradient method lead to robust 
method of global optimization (see, for instant, [1]). 

We shall be concerned here with the estimation of a Poisson mean. 
Since, the Poisson distribution provides a realistic model for many 
random phenomena, and certain random experiments involving counts of 
happening in time (or length, space, area, volume, etc.) can be 
realistically modelled by assuming a Poisson distribution. Such a count 
might be: 

(a) the number of fatal traffic accidents per week in a given state, 

(b) the number of radioactive particle emissions per unit of time, 

(c) the number of telephone calls per hour coming into the 
switchboard of a large business, 

(d) the number of meteorites that collide with a test satellite during a 
single orbit, 

(e) the number of organisms per unit volume of same fluid, 

(f) the number of defects per unit of same material, 

(g) the number of flaws per unit length of same wire. 

We are given a random variable X with Poisson distribution; that is, 

the probability that ,xX =  denoted by ( ) !xexX
xλ== λ−P  for 

..,1,0=x  and ,0=  otherwise. 
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The mean of the distribution is .λ  The parameter λ  in the Poisson 
distribution is usually unknown. Using minimax estimation for a 
bounded mean, this statistical problem was first elaborated in a series of 
papers (see, for instances, [6] and [9]). This paper is concerned with 
minimax estimation of λ  given the prior information that the Poisson 
mean λ  lies in a bounded domain Λ  in [ ),,0 ∞=+R  and using the 

information normalized squared error loss function 

( ) ( ) .,
2

λ
λ−δ=λδL  (1) 

This loss function is a commonly used compromise between mathematical 
tractability and statistical relative (see, for instance, [8]). However, the 
method would remain the same for estimation of different bounded 
parameters and different loss function. It would only be necessary to find 
the correct corresponding Bayes estimation by using those other densities 
and other loss functions. 

The expected error or risk of an estimator ,δ  when λ  is true, ( ) =λδR  

( )( )[ ]., λδ XLE  As a measure of the information in the experiment, we 

study the minimax risk 

( ) ( ).maxmin λ=Λρ δΛδ
R  (2) 

Unfortunately, exact analytic description of the minimax rule and risk is 
generally intractable, since the minimax rule is a Bayes estimator for a 

prior ,∗π  the least favorable distribution, which is necessary 
concentrated on a meager set of complicated form. For simplest cases, in 

this paper, we interested with ∗π  consists of a small number of points. 

2. Notation and Assumption 

We assume throughout that T is relatively open in .+R  Since, the 
continuity of risk functions ensures that ( ) ( ),Λρ=Λρ  we may and shall 

by convention choose ,Λ  so that, .int Λ=Λ  
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The problem of estimation, as it shall be considered herein, is loosely 
defined as follows: Assume that some characteristic of the elements in a 
population can be represented by a random variable X, whose density is 

( ) ( ),.,., λ=λ ffx  where the form of the density is assumed known except 
that, it contains an unknown parameter .λ  

Further, assume that the value of x of a random sample X from ( )λ.,f  

can be observed. On the basis of the observed sample values x, it is 
desired to estimate the value of the unknown parameter ,λ  of the 
unknown parameter. This estimation can be made in two ways. The first, 
called point estimation, is to let the value of same statistic, say ( ),xδ  

represent or estimate, the unknown ;λ  such a statistic ( )xδ  is called a 

point estimator. The second, called interval estimation, is to define two 
statistics, say ( )x1δ  and ( ),2 xδ  where ( ) ( ),21 xx δ<δ  so that 

( ( ) ( ))xx 21 , δδ  constitutes an interval, for which the probability can be 

determined that it contains the unknown .λ  

Consider estimating ,λ  denote δ  an estimate of .λ  

The normalized squared loss function, denoted by 

( ) ( ) .,
2

δ
λ−δ=λδL  

The risk function, denoted by ( ),λδR  of an estimator ( )Xδ=∆  is defined 

to be 

( ) ( )[ ],, λ∆=λδ LER  

the risk function is the average loss. 

Remark 1. If ( ) ( ) ,, 2λ−δ=λδL  then ( ) [( ) ]2λ−∆=λδ ER  is the 

mean square value of the estimation error (see, for instance, [12]) and 
we have shown, it minimum if [ ].∆=λ E  

Definition 1. An estimator ∗δ  is defined to be a minimax estimator, 
if and only if 
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( ) ( ),supsup λ≤λ δ
λδλ

∗ RR  

for every estimator .δ  

Throughout the paper, we restrict attention to the class of estimators 

( ) ( ) ( ){ },0implies0: =δ=δ=Λ= xxxDD   (3) 

since estimators not in D are easily seen to have infinite maximum risk. 

Definition 2. For a (prior) probability distribution ( ),λπ d  define the 
integrated risk ( ),, πδr  and the Bayes risk ( )πr  by 

( ) ( ) ( ) ( ) ( ).,inf,, πδ=πλπλ=πδ
∈δδ∫ rrdRr

D
  (4) 

Definition 3. Let ( )X∗π  denote the collection of probability 
measures supported in X. According to the minimax theorem, 

( ) ( )
( )

( )
( )

( ).sup,infsupsupinf π=πδ=λ=Λρ
ΛπΛπ

δ
Λ ∗∗

rrR
DD

  (5) 

A prior distribution attaining the supremum is called least favorable for 
.Λ  

Definition 4. The Bayes estimator of ,λ  denoted by ( ),X∗∗ δ=∆  is 
defined to be that estimator with smallest Bayes risk, or the Bayes 

estimator of λ  is the estimator ∗δ  satisfying 

( ) ( ),,, πδ≤πδ∗ rr  

for every other estimator ( )Xδ=∆  of .λ  

3. Bayes Estimator 

In this section, we will see how Bayes estimation can sometimes be 
used to find a minimax estimator. Our objective has been to minimize 
risk, but since risk depended on the parameter, we were unable to find 
one estimator that had smaller risk than all others for all parameter 
values. Minimax circumvented such difficulty by replacing the risk 
function by its maximum value, and then seeking that estimator, which 
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minimized such maximum value. Another way of getting around the 
difficulty arising from attempting to uniformly minimize risk is to replace 
the risk function by the area under the risk function, and to seek that 
estimator, which has the least area under its risk function. 

Consider an interval [ ]21, mm=Λ  with .0 21 ∞<<≤ mm  Since, 
the least favorable distribution 21,mmπ  is unique, and analyticity 

considerations imply that it is supported on a finite number of points in 
[ ]., 21 mm  Denote by { } ,α  the probability measure concentrated at 

.α=λ  Let [ ]21, mmkF  be the class of distributions of the form 

( ) { },,
1

ii

k

i
aa α

=
∑=απ=π   (6) 

where { } [ ]21, mmi ⊂α  and { }ia  are probability masses summing to 1. 
The least favorable distribution 21,mmπ  belongs to [ ]21, mmkF  for k 

large enough. The optimization problem is then to choose ,,,, 11 αkaa K  
,, kαK  constrained as above, so as to maximize 

( ) ( )( ) ( ).,,
1

ii

k

i
k Raarar α=απ=α

πδ
=
∑  (7) 

Lemma 1. If δ  is minimax, then ( ) .00 =δ  

Proof. Let ( ) ( ),λ=λ
πδRF  the function F is continuous on 0, then 

( ) ( ),lim0
0


 ππ δ→δ = RR  (8) 

by the Equation (13), we have 

( ) ( ) ,lim 000 =
π

δ
=

π

δ

→ δ∂

∂
=

δ∂

∂
ππ

xx m
RR

**

** 


 

then 

( ) ( ) ,00lim
0 m

m δ−=δ−
→ 



 

so ( ) .00 =δ  
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Theorem 1. The Bayes rule πδ  associated to such a prior is given by 

( )
[ ]

,1

1

1

1
1

i

i

ea

ea

xXE
x

x
ii

k

i

x
ii

k

i

α−−

=

α−

=
−π

α

α

=
=λ

=δ

∑

∑
 (9) 

with the convention (3) requiring that ( ) .00 =δπ  

Proof. *π  is maximum if 

( )
,0for,0

1
≠=

δ∂

α∂

π

δ

=

π∑ x
R

a i
i

k

i *

*  

where 

( ) ( )( ) ,!

2

0

i
x

xR
x
i

i
i

x
i

α−
∞

=
δ

α
α

α−δ
=α ∑π

e*  

then 

( )( ) ,0for,0!

1

1
≠=

α
δ−α α−

−

=
∑ xexxa i

x
i

ii

k

i
 

so we have 

( ) .0,
1

1

1 ≠

α

α

=δ
α−−

=

α−

=
π

∑

∑
x

ea

ea
x

i

i

x
ii

k

i

x
ii

k

i
*  

For identify the maximum, we recall an important and familiar criterion: 

Lemma 2. If the support of a prior ( )λπ d  is contained in the set, at 

which ( )λ
πδR  achieves its maximum on [ ],, 21 mm  then π  is least 

favorable and πδ  is minimax. 
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Analytical descriptions for [ ],,0 m  m is small. When m is sufficient 

small, it is plausible that the least favorable distribution ,: ,0 mm π=π  on 

[ ]m,0  would be given by a pint mass at m. 

Theorem 1. If ( )X∗∗ δ=∆  is a Bayes estimator having constant risk, 

that is, ( ) ≡λ∗δ
R constant, then ∗∆  is a minimax estimator. 

Proof. Let ( ).∗g  be the prior density corresponding to the Bayes 

estimator ( )..∗δ  

( ) constantsup =λ∗δΛ∈λ
R  

( )λ= ∗δ
R  

( ) ( ) λλλ= ∗
δΛ
∗∫ dgR  

( ) ( ) λλλ≤ ∗
δ

Λ∫ dgR  

( ),sup λ≤ δ
Λ∈λ

R  

for any estimator ( )..δ  

4. Global Optimization Problem 

We shall be concerned here with the estimation of a bounded Poisson 
mean with respect to a normalized squared error loss. However, the 
method would remain the same for estimation of different bounded 
parameters and different loss functions. It would only be necessary to 
find the correct corresponding Bayes estimator by using those other 
densities and other loss functions (see, for instance, [5] and [6]). The 
problem can be stated more precisely as follows. 

Let us consider the statistical problem of making an inference about 
the unknown parameter ,λ  given an observation of X. 
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A solution consists of an estimator or decision procedure ,δ  which is a 
measurable function from [ ] ,,0 Λ=→ mN  where N denotes the space of 
nonnegative integers. 

D denotes the space of decision procedures. A risk function ( ),λδR  
characterizes the performance of a decision procedure δ  for each λ  value 
of the parameter .λ  The risk function is usually defined in terms of an 
underlying loss function ( )., λδL  

A loss function maps { }0U+→Λ× RD  defines the cost of estimating 
,δ  when λ  is the true value of the parameter. Henceforth, we will 

assume that 

( ) ( ) .,
2

λ
λ−δ=λδL  

The risk of an estimator ,δ  when λ  is true, ( )λδR  is then the average 

loss incurred from using ,δ  that is, ( ) ( )( )[ ]λδ=λδ ,XLER  and since 

( )( )[ ] ( )( ) ( )xXPXLXLE
x

=λδ=λδ ∑ ,,  see [12], then 

( ) ( )( ) .!
2

0

λ−
∞

=
δ

λ
λ

λ−δ=λ ∑ ex
xR

x

x
 (10) 

By Lemma 1 

( ) ( )( ) .!
12

1

λ−
−∞

=

λ−
δ

λ
λ

λ−δ+λ=λ ∑ ee x
xR

x

x
 (11) 

A minimax estimator for the above problem is ,∗δ  if 

( ) ( ) .allfor,supsup
00

DRR
mm

∈δλ≤λ δ
≤λ≤δ≤λ≤

∗  (12) 

Minimax problems are often solved by considering the corresponding 
Bayes problems. A distribution or prior probability measure π  is specified 
on the parameter space ,Λ  and the relative performance of a procedure δ  
is specified by its Bayes risk. 
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It follows from Ghosh’s results [3] that a least favorable prior 
[ ] ,,0 Λ=m  will put mass on at most a finite number of points. 

More precisely, as shown by Johnstone and MacGibbon [8], the “least 

favorable” prior ( )λπ d  is of the form { } ( ).
1

∞<α
=
∑ ka ii
k

i
  In addition, the 

Bayes rule *πδ  is an “equalizer” rule; that is, 

( ) ( ) .,,1, kjiRR ji K=∀α=α
ππ δδ **  (13) 

It is known that 01 =α  and mk =α  (see [8]). 

Since, the objective function (7) of optimization problem is nonconvex, 

( ),:Maximize
1

ii

k

i
Ra α

πδ
=
∑  

,1:toSubject
1

=∑
=

i

k

i
a  

,,,2,1,0 kiai K=≤  

,,,1,0 kimi K=≤α≤  (14) 

we will restrict ourselves to the problem, when .3=k  

Thus, our problem is reduced to the following: for a suitable 

,27.1~12 −> mm  and for each ( ],, 21 mmm ∈  find the ,, 21 aa  and ∗λ  

satisfying ,10,10 21 ≤≤≤≤ aa  and m<λ< ∗0  such that { }01a=π∗  

{ } ( ) { }maaa  212 1 −−++ ∗λ
 is least favorable. In this case, the problem 

reduces to a global optimization problem with equality linear constraint. 

( ) ( ) ( ),0:Maximize 3221 mRaRaRa
πππ δδδ +α+  

 ,1:toSubject 321 =++ aaa  

  ,3,2,1,0 =≤ iai  

  .0 2 m≤α≤  (15) 
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By Equation (10), we have 

( ) ( )( ) ,10 2δ=
πδ *R  

( ) ( ( ) ) ,!
22

1
22

2
1

22
α−

−∞

=

α−
δ

α
α−δ+α=α ∑π

ee xxR
x

x
*  

 ( ) ( ( ) ) ,!
12

1

m
x

x

m
x

mmxmmR −
−∞

=

−
δ −δ+= ∑π

ee*  

then the problem (15) is nonconvex optimization problem with 5 unknown 
( )2321 ,,,, αθ aaa  and 3 equality constraints. 

If we denote ,2 bm=α  we can use the variable b instead of .2α  

The fact that the least favorable prior is an equalizer rule (13) shows 
that this problem is equivalent to the maximization of the convex 
combination of the several ig  function without the constraint on .θ  The 
problem, we eventually studied is the following: 

{ }














≤≤
=≤≤

=++

++−

,10
,3,2,10

,1
:toSubject

,:Minimize

321

332211

b
ia

aaa

gagaga

i

 (16) 

where: 

( ) ( ) ,1:,, 2
321 θ=δbaag  

( ) ( ) ( )( ) ( ) ( ) ,exp!exp:,,
1

2

1
322 θ=−δ−+−

−∞

=
∑ bmx

bmxbmbmbmbaag
x

x
 

( ) ( ) ( )( ) ( ) ,exp!exp:,,
12

1
323 θ=−δ−+−

−∞

=
∑ mx

mxmmmbaag
x

x
 

and 
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( ) ( )
( )

( ) ( ) ( )
( ) ( )









−+−++−
−+−

=δ

≠
+−

+−
=δ

−

.expexp1
expexp1

,1,0if,
1exp

1exp

3232
32

3
1

2

32

mabmaaa
mabmbam

x
ambba

ambbamx x

x

 

The algorithm of stochastic perturbation of reduced gradient (see, for 
instance, [1]) used to solve the statistical problem of estimating a bounded 
mean with a minimax procedure. 

5. Random Perturbation of Reduced  
Gradient Method 

5.1. Reduced gradient method 

We consider the following problem: 

( )








≤
=

,0
,tosubject

,Minimize

x
x
x

bA
f

 (17) 

where f is twice continuously differentiable function, A is nm ×  matrix 

and b is a vector in .mR  By assumption, the matrix A has full row rank. 

Let a feasible solution ,0≥kx  and let us assume that a basis B, where 

.0>k
Bx  The reduced gradient method begins with a basis B and a 

feasible solution ( )., k
N

k
B

k xxx =  

Now, let us assume that the basis is non degenerate, i.e., only the non 

negativity constraints 0≥Nx  might be active at the current iterate .kx  

Let the search direction be a vector ( )Tt
N

t
B ddd ,=  in the null space of 

the matrix A, defined as NB NdBd 1−−=  and .0≥Nd  If we define so, 

then the feasibility of dk η+x  is guaranteed as long as ,0≥η+ B
k
B dx  

i.e., as long as 

{ }.min
0,max

i

k
i

dBi d
x

i

−
=η≤η

<∈
 (18) 
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We still need to define 0≥Nd  such that it is a descent direction of Nf  

projected to the coordinate hyperplane active at the current point .k
Nx  

So, we have 

( )

( )
,

otherwise,,

,0and0if,0
Nj

x
f

x
fx

d

j

k
NN

j

k
NNk

j
j ∈











∂
∂

−

≥
∂

∂
=

=
x

x

 

where ( ) ( ) ( ).,11
NNNN NBbBfff xxxx −− −==  

To complete the description of the algorithm, we make a line search to 
obtain the new point. 

( ) ( ).minarg
max0

1
k

kkk dfQ η+==
η≤η≤

+ xxx  (19) 

If all the coordinates 1+k
Bx  stay strictly positive, we keep the basis, else a 

pivot is made to eliminate the zero variable from the basis and replace it 
by a positive, but currently non basic coordinate. 

5.2. Stochastic perturbation 

The main difficulty remains the lack of convexity, if f is not convex, 
the Kuhn-Tucker points may not correspond to global minima. In the 
sequel, we shall improve this point by using an appropriate random 
perturbation. 

The sequence of real numbers { } 0≥k
kx  is replaced by a sequence of 

random variables { } 0≥k
kX  involving a random perturbation kP  of the 

deterministic iteration (19). A simple strategy consists in 

( ) .0; 100
k

k
k

k XQXkX P+=≥∀= +x  (20) 

Equation (20) can be viewed as perturbation of the descent direction ,kd  

which is replaced by a new direction ,kkkk dD η+= P  and the 

iterations (19) become 
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.1
kk

kk DXX η+=+  

The procedure generates a sequence ( ).k
k XfU =  By construction, this 

sequence is decreasing and lower bounded by ,∗U  and converge to the 

global minimum (see, for instance, [1], [2], and [13]). 

6. Numerical Result 

By using random perturbation of reduced gradient method for solving 
global optimization problem (16) with initial point ( ,4.0,1.0 21 == aa  

)5.0,5.03 == ba  and number of perturbation = 2000, we find the 
following results, see Table 1, where NI is the number of iterations. 

Table 1. Least favorable distributions and minimax risk on [ ]m,0  as a 
function of m 

m 1a  2a  3a  b 2α  θ  NI 

2.7 0.09389 0.90702 0.0000 0.50784 1.37 −0.40498 8 

3 0.09530 0.90568 0.0000 0.45531 1.37 −0.40488 6 

3.5 0.09316 0.90722 0.0000 0.36173 1.27 −0.40425 7 

4 0.09316 0.90760 0.0000 0.32486 1.30 −0.40492 6 

4.5 0.09432 0.90652 0.0000 0.30125 1.36 −0.40521 5 

5 0.09899 0.90182 0.0000 0.27243 1.36 −0.40505 6 
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